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Abstract-—Neural adaptive beamformers (NABF's) utilize neu-
ral paradigms to accomplish desired adaptions that are associ-
ated with sensory-field-responsive partitioning and selection
processes. Kohonen-type organization aud Hepfield-type opti-
mization have been formulated as NABF mechanisms and have
been applied to test data. Formulations and results are in-
cluded. NABF's are also used in conjunction with a tearning
network for interpretation of weight sets as population codings
of direction. An example is included. Finally, desirable qualities
of human auditory response are being interpreted in the context
of neural adaptive beamforiiing for the purpose of creating an
integrated processing structure that incorporates NABF’s, a
cochlear model, and an associative memory as part of a total
spatio-temporal processing scheme for selective attention.

1. BACKGROUND

URING the course of this work on sensory process-

ing, information from the studies of biological sys-
tems, including psychosensory experiments on humans {1},
[2] detailed physiological studies [3], and detailed neuro-
logical studies of animal sonar systems [4], has guided the
philosophical and architectural orientation of the develop-
ing computational system. In this respect, studies of vert-
ibrate auditory systems are germane to our work with
regard to ocean sonar systems, both passive and active.
For example, it is important to acknowledge that a desir-
able object orientation is supported, in the neurobiologi-
cal context, by the integration of the computation
products of different nuclei of the brain through their
interaction along afferent and efferent propagation chan-
nels. This often includes the integration of different sen-
sory modalities, but even within a single modality there is
considerable interactive integration. For example, cogni-
tive auditory function encompasses the simultaneous acts
of 1) attending memory according to stimuli, 2) attending
stimuli according to memory, and 3) attending stimuli and
memory according to an ongoing thought process.

What does an auditory system do? One answer is that
the auditory system creates the perception of individu-
ated, recognizable sounds out of the ongoing composite
excitation received at the two ears. To perform this func-
tion upon the excitation of man-made sensor arrays using
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a man-made computer s the goal of the work bemng
reported here

It has long been known that beamforming i uscial for
atding the mterpretation of composite excitations 1n sonpar
apphcations where muluple sounds are simultancoush
incident upon sensory arrays. What do beamformers do”
Beamformers are devices that exhibit nonuniform re-
sponse across ranges of dimensions of the stimulus field.
[t is suggested that this is an important function of the
ncurons of our brains and of cognitive sensory processors
in general, including those that are man-made. In these
devices, the focussing of the beamformers 15 to be di-
rected by providing exemplary excitations of interest {as
from memory). Hence these devices are to perform adap-
rive beamforming and adjust their ranges of maximum
response according to the content of the sensory field.

Augmented Kohonen-style organization and Hopfield-
style optimization processes have been used to perform
“neural” adaptive beamforming [5-8], where “ncural” is
being used in the seansc of the popular metaphor. The
NABF paradigms easily integrate the qualities of atten-
tiveness and binding when they are applied to paru-
tioned /segmented sensory excitation. A brief overview of
these two principal neural beamforming schemes is given
here.

1) The crossbar beamformer is based on the Hopfield
crossbar circuit. In its simplest form the crosshar adaptive
beamformer (CABF) can be described as an adaptive
combiner or mixer {9] with an augmented crossbar net-
work of graded response and associated reguiator embed-
ded as processing kernel elements [10} A method for
controlling a crossbar circuit is derived from Wicner opti-
mal least-squares filtering principles. The regulator, cross-
bar network. and adaptive combiner arrangement func-
tion to selectively attend task-relevant sensory cxcitation
from within a total excitation which includes nonrelevant
components. Adaption of the network response occurs
without explicit computation of the error between the
output and the exemplar. This is possible because hypoth-
esis/memory-driven exemplars are supplicd at the input.
The CABF circuit form allows an organized implementa-
tion in dedicated VLSl hardware. Simulations suggest
convergence in merely a few time constants of th: haiu-
ware devices.

2) The multivector adaptive beamformer (MABF) is re-
lated to Kohonen feature map learning. It does a statisti-
cal segmentation of the stimulus field, independent of any
exemplars, and it can serve as an element of continually

0364-9059 /92803.00 © 1992 IEEE




moditiable associatve memory or a cassitier; it s formu-
lated in terms of mulodimensianal geometrical caleulus

{rj.

ILONABE Meoranisas
A. Crossbar Beamformer

Key elements of the beamtorming structure (Fig. 1) are:
1) activity representing propagation of time and/or phase
lagged excitation to the adaptive synapses, 2) a model that
relates conductivity and current flow at the synapses to
measures of time averaged coexcitation of afferent activi-
ties with each other and measures of correlation of affer-
ent activity with exemplars/memories, 3) the crossbar
kernel, and 4) multiplicative connections from the cross-
bar kernel outputs {(»,) onto the combiner portion of the
CABF.

The CABF minimizes the mean square error (£) be-
tween the real part of the beamformer output (y) and the

exemplar (h)'
pl&lxu-]) - hlh}

§:E{[ Y (vx, —
i odd

where E denotes the expectation. Let the beamformer
weights, {(w;), be related to the Hopfield circuit output
voltages according to

(D

1T T Vi {odd 2

resulting in the simplified expressions

RC (y} = Z wixt

¢-([(Sma) -] )

A direct relationship is established between the magni-
tude of £ and the value of the Hopfield energy function,
H (a Lyapunov function associated with the crossbar
circuit). This relationship is established, in practice, by
applying a controller {the black box labeled “membrane
model” in Fig. 1) to the crossbar arrangement. The re-
quired behavior of the controller can be derived analyti-
cally by equating £ and H and solving for the currents
and connectivities of the crossbar as functions of the
excitations (x;).

The crossbar circuit which is illustrated in Fig. 1 is
shown in more detail in Fig. 2. The circuit ic simply a
number (N) of charge flow control devices, each con-
nected with variable efficacy to each of the others. Hop-
field has shown that if the connections are symmetric
(T,; = T, and direct feedback is zerc (T, = 0) then the
circuit will converge to stable states representing the local
minima. These conditions on the connectivity are suffi-
cient but not always necessary, dependent on the applica-
tion. It is convenient to choose the simplified form of the

(3)

(4)

"For simplicity it is assumed here that the quadrature input is
available. Other cases have been considered elsewhere (Speidel, 1990).
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Lyapunov function

1
e=-3L LTy - Liv. )
i i i

Hopfield and Tank (1985) use this form when they oper-
ate at the high-gain limit. However; herc the primary
motive is to simplify the expression for ¢. The behavior of
the neglected term of ¢ (as a function of the gain) is
cxamined elsewhere {8). The term can be neglected with-
out much sensitivity to the gain (g) in this application.

It is convenient to set the doubled modified Lyapunov +
function equal to the mean squarc 2rror () minus
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The resulting expressions tor the connectivities and cur-
rents are
l o “ye
S v twmyimydn. T, =0

(8)

comnectivity T, (1) =

|
ion flow [, = = j, viAnYh(n + 1 -1)dn
:

“ul = D[ xmam) dn
)

where 7 is a response latency period, and v{r — 7) is the
output amplitude at the end of the previous epoch from
the /th element. In the case of discrete time-step simula-
tions, the expectation value is usually evaluated by sum-
ming.

The voltage controlled feedback to the input current,
(9), is equivalent to a direct negative feedback connection,
T, + 0, if the value of the voitage feedback term of the
current is allowed to vary during equilibration of the
crossbar circuit. However, in the present implementation,
the current is fixed, i.e., the controller (membrane model)
clamps the current during equilibration. Thus, there are
in effect two time-scales: the epoch scale and the scale of
dynamic equilibration of the crossbar arrangement (mem-
brane dynamics) in which the time incrementi is chiosen to
be a fraction of the device (cell) time-constant.

Fast and compact analog electronic implementations of
(8) and (9) may be used to compose the controller and
crossbar circuit. The specific circuits would be the “leaky
integrators,” differentiators, and hardware convolvers that
have been pivotal advancements in the area of neural
hardware [12}, [13].

B. Multivector Beamformer

The action of the MABF is pictorially represented in
Fig. 3. During learning, memory formation is accom-
plished according to

W = Wl + a(F, - G)Ad, (10)
where W is the “weight plane,” expressed as a bivector, of
the ith processing element (PE) of a layer of PE’s that
receives a fanout of the inputs, a is the learning rate,
d, = %, - W, (the bar denotes normalization), ¢, is the
projection of X, onto W,, normalized to unit length, and
the <vmbol A denotes the wedge product [11]. For the
case of temporal learning, the input vectors are formed
from a tapped delay line.

I11. NABF APPLICATION

A. Sonobuoy Deployment Test Case

The performance of the CABF was validated against
composite sounds of a real sonar scene impinging upon a
spatially complex array. The data were obtained from the
Sonar Thinned Random Array Program (STRAP). Fig. 4
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Fig. 4. The deployment pattern for the sonobuoys.

depicts the spatial arrangement of 11 sonobuoys that were
dropped in the Atlantic Ocean. A known source was
active at a distance of approximately 10 mi. It consisted of
two frequencies, seven and eleven Hertz. Figs. 5 and 6
show spectral densities from various channels. Notice the
inconsistency across the channels.

The temporal recordings made at these buoys were
played into the beamformer. Fig. 7 shows the adapted
sensitivity of the CABF as a function of time. The CABF
is correctly attending the desired signal at approximately
41°. Though the beamformer’s attention is occasionally
distracted, these results are very good when you consider
that no spectral preprocessing was performed, i.c., the
desired signal was still mixed with the other interfering
components at a level of approximately —20 dB with
respect to some higher frequency components (Fig. 5).

Currently, more tests are being performed with interfer-
ing signals arriving at other directions. Fig. 8 shows what
happens when an identical signal is simultaneously com-
ing in at zero degrees and at approximately the same
sound level. Notice how the attention of the beamformer
flips alternately back and forth between 41° and ° az-
imuth. This is not always undesirabic hut in some contexts
it makes the simultaneous tracking of multiple sources of
the same kind difficuit.

B. Fast Computation via Digital Hardware

Two digital signal processing boards are currently being
utilized to achieve real-time performance for combined
wavelet processing (as in Aussel, 1989) and adaptive
beamforming. These boards include analog input/output
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Fig. 5. Spectral density for the STRAP data set, channel 1. It s plotted on three different frequency scales.

daughter boards with built-in active filters. Each board
gives two input channels with simultaneous sampling to
400 kHz at 12 bits resolution which is sufficient for sonar
processing, and a floating point DSP with performance at
50 million floating-point operations per second
(MFLOPS). With the two boards (100 MFLOPS perfor-
mance) the processor operates in real time. The clocks of
multiple boards are slaved together to give simultaneous
sampling on all channels and communication busses be-
tween the boards allow true parallel processing.

In experiments using an array of microphones operated
in a laboratory room, the CABF was able to locate a
sound source while rejecting other interfering sounds in
the laboratory. For these experiments, notes were played
on musical instruments in a high noise background.
Recognition in this case was pitch dependent. Future

experiments will explore pitch-independent recognition of
musical instruments.

IV. POPULATION CODING AND DECODING OF
DIRECTION

In the case where a set of sensors have been deployed
in a manner that results in unknown or inaccurately
known positions, or when environmental conditions pro-
duce multiple propagation paths, special techniques arc
required for associating directions with array phase pat-
terns. As a concept demonstration, a neural network was
trained to associate direction sincs with patterns of the
phase of sensory excitation. Its performance was tested
with both regularly spaced and randomly dithcred arrays.

One advantage of using this technique s that when
training a network the output direction values can be
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referenced to a landmark or platform frame not necessar-
ily associated with or related to the array geometry (al-
though the array geometry will certainly affect the net-
work’s performance). Also, if direction to target is used
for training, rather than direction of incidence, then the
direction association network (DAN) forms a propagation
model as it learns its associations. Compensation for
near-field effects (non-planar wavefronts across the aper-
ture of the array) can also be attained.

The patterns to be input to the DAN can be generated
by an NABF weight generation process such as the CABF
which, in this case, functions as an encoder of features of
incoming signals. A useful neural computing cluster can
thus be formed out of the CABF and a DAN. The cluster
integrates the direction finding and adaptive beamforming
functions (see Fig. 9). The azimuth and elevation may be
output as direction sines/cosines. In the autonomous

vehicles application, the output can be a control vector
instead of the azimuth and elevation outputs shown.

A DAN that uses the backpropagation algorithm to
learn to associate directions with beamformer weight pat-
terns has been implemented and tested on a digital com-
puter. It was found that a subnet can be trained to
perform well at associating beam weights with directions
even though the sensor positions are randomized and not
known to the subnet.

The network consists of three layers. There are 18
processing elements in the first layer, four elements in the
second layer, and one element in the output layer. The
choice of the number of hidden units was made by doing
exploratory runs with fewer and more units, compromising
between performance gain and the computation load. The
minimum number of hidden units was used, which was
sufficient to give good performance on the training sct.
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The network is given full layer to layer connectivity, Le.,
every laver-2 element is connected 1o every layer-1 ele-
ment and the single layer-3 element is connected to cvery
layer-2 element.

Training inputs to the first layer arc generated by
simply computing beamforming weights (similar to what
would be output by an RCN) for each angle of a set of
test angles that span -90 to +90°. Resulting patterns are
stored in a file, then they are fed to the network repeat-
edly during training with appropriate sines of the training
angles presented simultancously as output values for the
network. The backpropagation training algorithm that was

used closely follows the derivation by Rumelhart ¢ al
14}

Training and test data were synthesized for the tollow-
ing array geometries: 1) the training set is generated as if
the sensor array is a regular-spaced. lincar array with half
wavelength spacing between the sensors. and 2) the train-
ing set was generated with the sensor positions dithered
by amounts determined by a pscudorandom number gen-
erator and within a wavelength of nominal regular spacing
as in case 1) (see Fig. 10). In both cases the training sets
have entries every 5.07 while the test sct used to generate
the error plots has entries every 1.0°
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Fig. 11(a) and (b) show error summaries for the
regular-spaced array and with 100 and 1000 training
passes, respectively. Note that in the training beyond 100
passes the network continues to improve performance at
the ncar end-on incidence angles to the detriment of
performance at the array broadside 2ugles. One way to
alleviate this problem would be to leave the data for
end-on angles out of the training for linear array geome-
tries.

Fig. 12(a) and (b) are similar to Fig. 11(a) and (b) except
that the training and test dala are relevant to the ran-
domly dithered array. Thc same overtraining effect is
evident here as was discussed relative to the regular

spaced array case. The array is a nearly linear array sin: 2
the sensor locations were only dithered by plus or mirus
one half wavelength.

V. COGNITIVE SENSORY PROCESSING
A. Architectural Overview

A conceptual overview and some key elements of a
comprehensive processing scheme are depicted in Figs. 13
and 14, respectively. The conceptual overview is a simpli-
fied representation that includes four principal functions:
1) the partitioning function, such as the partitioning done
by the cochlea or retina or computational correlates of
these, 2) the selection function, such as the adaptive
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focussing provided by adaptive beamforming or filtering,
3) position and motion determination, and 4) recognition.
In reality, these functions are not performed separately.
They are provided by the interacting elements of the
processing scheme,

The key elements of the processing scheme are: 1)
multiple band filtering, 2) binaural correlation, 3) spa.ial
attentional focussing, and 4) temporal attentional fo-
cussing /recognition. In practice, multiple-band filtering
corresponding to the cochlear filtering indicated in Fig. 14
is performed using a scaled-wavelet formulation, provid-
ing a spread of bandwidths associated with the various
best-frequencies [15). It is recognized that this model
cannot account for the sharpness of the cochlear response
function near the best frequency [16].

Spatial mappings have been observed in the colliculus
in some vertebrates [17], {18) and in cortical field Al of
the cat. Intermediate between the cochlear processing
and the bandwise spatial mapping (Fig. 14) is an adaptive
spatial process (not depicted) provided by the NABF. The
darkened areas represent those attended (emphasized) by
the NABF. Thus the spatial layer acts as a sieve, passing
attended stimulus partials.

The spatial mappings can be related to the beamformer
sensitivity maps of Figs. 7 and 8 where a single row of the
spatial map as a function of time is plotted contiguously
down the page. These maps represent the activity of a
layer of beamformers with relatively fixed directional pref-
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has four hidden units; the array is regularly spaced.

erences. What is the purpose of forming a topological
organization of the beamformers? The topological map-
ping creates an organization by which the cells for the
various auditory bands which respond to a given object in
space are close together. This simplifies the projection of
the output of the spatial neurons to the cortical area
where recognition is accomplished. This organization is
also beneficial in the digital signal processing application.
though the units are not actually arranged spatially but
are arranged by ordinal number instead.

Notice that a loop has been formed, because the output
of the spatial map projects as input to the recognition
area, the output of which was utilized in the formation of
the spatial map. In the biological case, it is not clcar
whether this system constantly feeds back on itself or if
there is an afferent wave of activity followed by an effer-
ent wave or vice versa. In the case of the computational
model, it can be done either way and perhaps an investi-
gation of this will lead to some conclusions. It could be
that the loop leads to oscillations in some circumstances.
If it does, the ielationship of the osallations may be
studied in light of recent observations [19).
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In the computational model, the projections from the
spatial map are input to a MABF process. The overall
action of the recognition MABF is to segment and iden-
tify patterns of temporal activity across the auditory bands
which are established in the cochlea. Each spatial stimu-
lus segment is again scgmented temporally according to
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Fig. 14. Depiction of a comprehensive processor that includes cochlear
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partitioning, spatial maps, and associative memory.

memory by creating a time dependent sensitivity. The
MABF attempts to create a stimulus partial which matches
the temporal characteristics of each band, the total effect
being to match the spectral content as a function of time,
including relative phase variations, of an elicited memory
using the spatially oricnted spectral-band inputs as a
basis. Recognition depends upon a combination of te-
sponses across the bands, i.e., the temporal gualities of all
the individual frequency bands is being assessed simulta-
neously. Irequency modulation in the stimulus will appear
as recognizable temporal variation in the bands. in the
training mode, memories are established as a set of
weightings.

The main function of the recognizer is to attend mem-
ory according to the stimulus. Only the temporally varving
activities of the attended spatial segments clicit memorics,
because they are stronger. Initially, however, the system
may not be attentionally focussed and the performance of
the NABF on composite waveforms becomes important.
In some cases, individual sounds may not be discerned
without intervention of a thought process.

When a memory is elicited, a partial of the stimulus is
produced through the action of the temporal beamformer,
ie., when a beamformer wins then the temporal vector
associated with that memory is considered a partial of the
stimulus (a significant one). This partial is fed back to the
spatial mapping process, resulting in attention to or a
focussing upon the spatial sector from where the partial
came,

B. Example

This comprehensive processing schemc is being built
into the fast digital implementation that was discussed
above. The needed capacity will soon be supplied by five
central processing units (CPU’s) operating simultancously.
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Currently, three CPU's are producing a wavelet filtet
bank as a simple enchlea model and are also producing
the spatial maps for a small number of bands when
runging with two microphones. In real-tune demonstra-
tions single-band spatial maps are displayed as a function
of time.

The final operation of this system will proceed as fol-
lows: the analog input boards sample the sensor excita-
tions simultaneously and pass the data to the DSP boards
where delays, Hilbert transforms, and wavelet bandpass
filters are applied by use of digital filtering technigues.
Initially, the adaptive selection processes are in a state ar
if no stimulus of interest is present, therefore there is no
focussing. When a stimulus of interest appears, it will
ellicit the generation of a nearest match exempiar from
associative memory, the exemplar will be fed to the adap-
tive process and focussing will occur. The exemplar may
change during the course of focussing. Of course, the
associative memory will continually be providing exem-
plars even when no stimulus of interest is present, but
there will be no significant focussing.

In the first implementation of this simulated auditory
process, there was no associative memory of exemplars.
Task relevant exemplars were made available in a sequen-
tial manner from a stored set of digitized exemplars. This
may be appropriate for a device which performs a single
task (like tracking any object that is a member of a set of
task-relevant objects that are relatively distinct from one
another).
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